
Making Interval Arithmetic Robust to Overflow

Oliver Flatt
Paul G. Allen School

University of Washington
oflatt@cs.washington.edu

Pavel Panchekha
Kahlert School of Computing

University of Utah
pavpan@cs.utah.edu

Abstract—In theory, interval arithmetic at high precision can
compute mathematical expressions to any required accuracy.
An arbitrary precision library like MPFR can thus be used to
evaluate real-valued expressions. In practice, however, MPFR’s
maximum representable exponent means some inputs cannot
be evaluated to the required accuracy. This paper introduces
movability flags, which soundly detect the majority of these
inputs. Movability flags are set when overflow occurs and
track whether recomputing at higher precision could possibly
result in narrow intervals. In our tests on 481 expressions,
movability flags detect 81.0% of unsamplable inputs. Com-
pared to Mathematica, our movability-flag-enhanced interval
arithmetic library resolves 60.3% more challenging inputs, re-
turns 7.6× fewer completely indeterminate results, and avoids
64 cases of fatal error.

Index Terms—Interval arithmetic, overflow, computable reals,
multiple precision arithmetic

1. Overview

Consider computing xy/(xy + 2) for various inputs
(x, y) to an accuracy of two decimal digits.1 Using two-
digit decimal interval arithmetic on input (3.0, 1.1) results
in the interval [0.61, 0.65]. The result represents a range
because of rounding error; for example, 3.01.1 is not ex-
actly representable with two-digit decimals so must return
[3.3, 3.4]. If our ultimate goal is to compute the result to
two decimal digits, this answer is not sufficiently precise;
any of 0.61, 0.62, 0.63, 0.64, or 0.65 could be the correct
answer. Recomputing the the result in higher precision
can help. For example, using four-digit decimal intervals,
[3.0, 3.0][1.1,1.1] = [3.348, 3.349] and the final result is
therefore the much narrower interval [0.6259, 0.6263]. Im-
portantly, both endpoints round to two-digit decimal value
0.63, meaning that the true value does too. Even higher
precisions could be used if four-digit intervals don’t produce
a narrow-enough result.

Yet now consider the extreme input (x, y) = (1010, 1010),
which might come from an automated tool like error esti-
mation, stability analysis, or model checking. On this input,

1. For ease of exposition, this section uses decimal floating-point, though
MPFR and Rival in fact use binary floating point.

xy is huge, overflowing to infinity in the MPFR arbitrary-
precision library. So xy must return [Ωp,∞], where Ωp is
the largest finite value in precision p. The final resut is
thus [Ωp,∞]/[Ωp,∞] = [0,∞], too wide to be useful at
any precision p. Automated tools will typically attempt
to recompute at higher and higher precisions, but these
recomutations just waste time because this error occurs at
any precision.

Movability flags detect futile recomputation. When xy

overflows, for example, the infinite endpoint in [Ωp,∞] is
marked “immovable”, because it will evaluate to ∞ and any
higher precision q > p.2 We write the movability flag with an
exclamation mark: [Ωp,∞!]. These movability flags can be
soundly propagated through interval computations: [Ω,∞!] +
2 also has an immovable infinity, and the final result [!0,∞!]
has two immovable endpoints—because the left endpoint
is computed by dividing by immovable infinity, while the
right endpoint has an immovable infinity in the numerator.
Because both endpoints are immovable, recomputation won’t
help and an error can be printed immediately.3

Importantly, movability flags are sound: an interval can
only become immovable if recomputation at any higher
precision yields the same result. Movability flags thus still
allow recomputation where it is necessary, and avoid warning
about benign overflows like in 1/ex. While movability flags
can’t detect all cases of futile recomputation—the problem
is likely undecidable [1]—they do detect the vast majority,
thereby making tools that use interval arithmetic faster and
more robust.

2. Movable and Immovable Endpoints

Let Sp be the set of real numbers representable in
precision p using MPFR, and let R↓p and R↑p be the round-
ing functions (up and down) from R to Sp. An interval
[a, b] ∈ S2

p then represents the set {x ∈ R | a ≤ x ≤ b}
and functions f : R → R can be extended to functions
fp : S2

p → S2
p such that if x ∈ I then f(x) ∈ fp(I).

Movability flags augment each interval with a boolean
flag at each endpoint; we say the endpoint is immovable when

2. The left endpoint Ωp is not marked immovable, because slightly larger
“largest” numbers are available at higher precisions.

3. Or a warning could be printed, or the input point skipped, or some
other application-appropriate action.

its movability flag is set. An immovable endpoint doesn’t
change if recomputed at a higher precision, formalized as a
notion of refinement:

Definition 1. One interval refines another, written [a′, b′]p ≺
[a, b]q, when b′ = b and both are immovable or when b′ ≤
b and b is movable; and likewise a′ = a and both are
immovable or when a′ ≥ a and a is movable.

An interval library with movability flags then guarantees
that each function is isotonic with respect to refinement:

Property 2. fq(I ′1, . . . , I
′
n) ≺ fp(I1, . . . , In) when q > p

and I ′i ≺ Ii, for all functions f .

If fp(I, J) has an immovable endpoint, fq(I ′, J ′) must share
that immovable endpoint; if both endpoints are immovable,
the interval has only one refinement so recomputation can
be skipped. The remainder of this section describes how to
guarantee Property 2. Because immovable endpoints strictly
restrict refinement compared to movable ones, that largely
means knowing when an interval can safely be marked
immovable.

2.1. Constants and Overflow

Point intervals [x, x], like for numeric constants 2 or 0.5,
only refine to themselves, so both endpoints can be marked
immovable. Inexact constants like π, however, yield narrower
intervals at higher precisions so have movable endpoints.

Computations that overflow also result in immovable
endpoints. For example, in the MPFR library, exponents are
bounded by 2H for some H , so any real number equal to
22

H+1 or larger rounds up to +∞ at any precision. Rapidly-
growing functions like exp, exp2, and pow can thus set the
right movability flag for particularly large inputs:

Lemma 1. The output of expp([a, b]) has an immovable
right endpoint if either a) a ≥ (2H + 1)(log 2), or b) b ≥
(2H + 1)(log 2) and also b is immovable.

Proof. If a ≥ (2H +1)(log 2), all points in the input interval
maps to values larger than 22

H+1. The right endpoint then
rounds up to +∞ no matter the precision p. It is therefore
sound to mark the right endpoint immovable.

The case where only b ≥ (2H + 1)(log 2) is more
complex. The right endpoint is equal to infinity, but it can
only have its movability flag set if it would also equal infinity
for all refinements of [a, b]. If a < (2H + 1)(log 2), this is
only true if b is immovable.

Note that similar reasoning does not apply to the left
endpoint: arbitrarily-small numbers can be represented by
MPFR as denormal values at a high-enough precision.

2.2. One-Argument Functions

Functions propagate movability flags from their inputs
to their output. Consider a monotonic function f(x) for
illustration. Its behavior on intervals is particularly simple:

fp([a, b]) = [R↓p(f(a)), R↑p(f(b))].

Now suppose a is an immovable endpoint; the left endpoint
in any higher precision q will thus be R↓q(f(a)). These will
be the same only if the rounding behavior is the same, which
occurs when f(a) is exact at precision p. Formally:

fq([!a, b′]) = fq([a, b′]) = [R↓q(f(a)), R↑q(f(b′))]

= [f(a), R↑q(f(b′))] ≺ [f(a), R↑p(f(b))] = fp([!a, b])

To generalize, for monotonic functions, exact computations
on immovable endpoints result in immovable endpoints.
For example, in sqrtp([0, 4!]) = [0, 2!], 2 is immovable
because the square root of 4 is exact, but in sqrtp([0, 2!]) =

[0, 1.414 . . .], the right endpoint is movable because
√

2 is
not exact. MPFR reports whether an operation is exact, so
this rule is implementable.

Non-monotonic functions are more complex. They can
be thought of as computing f on critical points a′ and b′:

fp([a, b]) = [R↓p(f(a′)), R↑p(f(b′))] where a′, b′ ∈ [a, b]

If we think of the computation of a′ and b′ as an intermediate
step in fp, the rule for endpoint movability becomes:

Lemma 2. Suppose fp([a, b]) computes its left endpoint via
f(a′), which is also exact in precision p. That endpoint
may be marked immovable if either 1) a′ = a and a is
immovable; 2) a′ = b and b is immovable; or 3) a and b
are both immovable and a′ is computed exactly. The right
endpoint is analogous.

Proof. Consider a refinement I ≺ [a, b]. First note that a′ ∈
I: if condition (1) or (2) holds, a′ is equal to an endpoint
preserved by refinement, while if condition (3) holds, I =
[a, b]. Since a′ minimizes f over the interval [a, b] and a′ ∈
I ≺ [a, b], a′ also minimizes f over I . Since f(a′) bounds
f from below over I , therefore so does R↓q(f(a′)) for any
precision q > p. Since a′ ∈ [a, b] that means R↓q(f(a′)) is
the left endpoint of fq(I). If, furthermore, f(a′) is exact
in precision p, then R↓q(fq(a′)) = R↓p(f(a′)). Therefore
fp([a, b]) and fq(I) have the same left endpoint, meaning
that it satisfies Property 2.

Computing these critical points is easy for most functions;
For example, for fabs([a, b]), the left critical point is a, b,
or 0, and the right critical point is a or b. Also note that
Lemma 2 does not mention the precision of a′; this means
that it’s valid to compute it symbolically. For example, cos
has a minimum of −1 at π. Thinking of π symbolically thus
allows marking the left endpoint of cos([!3, 4!]) immovable
by condition (3). Most importantly, Computations on infini-
ties are exact, so Lemma 2 preserves these typicaly products
of overflow.

2.3. Many-Argument Functions

Most many-argument functions can be implemented via
the following generalization of Lemma 2:

Lemma 3. Suppose fp([a1, b1], . . . , [an, bn]) computes its
left endpoint via f(a′1, . . . , a

′
n), which is also exact in

precision p. That endpoint may be marked immovable if,
for all i, either 1) a′i = ai and ai is immovable; 2) a′i = bi
and bi is immovable; or 3) ai and bi are both immovable
and a′i is computed exactly. The analogous applies to fp’s
right endpoint.

The proof is entirely analogous to Lemma 2. However, the
“for all i” clause is too conservative for some common
functions. Addition is one example. Consider [1,∞!]+p [1, 2];
this falls in none of the cases of Lemma 3, but the right output
endpoint, ∞, should still be immovable because anything
plus infinity is infinity. Similar reasoning applies to hypotp
and to multiplication by 0. These functions thus require
special-cased implementations to propagate movability flags
in as many cases as possible.

A more complex special case is multiplication by infinity.
For example, [0, 1] ×p [!1,+∞!] = [0,∞!] and [−1, 0] ×p

[!1,+∞!] = [! − ∞, 0]. But since both refine [−1, 1], we
have [−1, 1] ×p [!1,+∞!] = [−∞,+∞], where the output
interval must be movable. More generally, handling infinite
values in multiplication requires knowing the sign of the
input interval:

Lemma 4. Let c = a′i ×p b
′
i be an endpoint of an interval

returned by multiplication. The endpoint may be marked
immovable if: 1) both a′i and b′i are immovable and c is
computed exactly; or, 2) a′i is zero and immovable (or likewise
for b′i); or, 3) a′i is infinite and immovable and [b1, b2] does
not contain zero (or likewise for b′i).

Proof. The first case just restates Lemma 2. In the second
case, a′i is immovable, so a′i = 0 is in any refinement. Since
0 × b′i = 0 for any b′i, the result is immovable. Finally,
in the third case, all elements of [b1, b2] have the same
sign. So since a′i is immovable, a′i × b′i has a fixed sign.
Since a′i is infinity, the resulting endpoint is the same in any
refinement.

Similar logic applies to the powp function with zero, unit,
or infinite arguments; our implementation of powp only sets
movability flags when the first argument is positive. These
special cases seem obscure, but are in fact important because
overflow frequently produces immovable special values like
0, 1, and infinity, which must then be propagated.

3. Stand-Alone Evaluation

We implement movability flags in Rival, a free software
interval arithmetic library for Racket largely conforming to
IEEE 1788, including the def and ill decorations. Code and
documentation is available online at https://docs.racket-lang.
org/rival/. We test Rival on the Herbie 1.4 benchmark suite,
which contains 481 floating-point expressions from numerical
methods textbooks, mathematics and physics papers, and
surveys of open-source code. For each expression, we sample
8 256 random inputs and evaluate it at each input to double
precision. The working precision starts at 80 bits and doubles
on recomputation, capped at 10 240 bits. The key evaluation
condition is the number of points that hit that cap without
producing an immovable interval.

In total, movability flags detect 81.0% of such points
and thus prevent most futile recomputations (Figure 1).
These points come from 21 expressions, mostly ratios of
exponentials. For example, the expq2 benchmark computes
exp(x)/(exp(x)−1); for inputs like x = 10100 the numerator
and denominator are both too large to be represented.
Movability flags detect this at just 80 bits of precision.

The expq3 requires higher working precisions to produce
an immovable interval. This benchmark computes:

ε ·
(
e(a+b)·ε − 1

)
(ea·ε − 1) · (eb·ε − 1)

, with −1 < ε < 1.

For a = ε = 10−100 and b = 10200, the numerator and
denominator both have terms that overflow. However, at low
precisions, the first term in the denominator rounds down
to 0, making the denominator possibly zero and preventing
movability flags from propagating to the output. Only at 2560
bits of precision is an immovable output interval produced.
There are a couple of similar examples in Herbie 1.4’s
hamming suite.

Movability flags do fail on some more challenging
examples. For example, consider the exp-w benchmark,
e−w · pow(`, ew), when ` is negative and w large and
positive. Here, pow(`, ew) raises a negative number to a
possibly-infinite power; movability flags are not set because
our implementation of pow only sets movability flags when
the first argument is positive. Movability flags also fail on
the classic difficult-to-analyze function “Kahan’s Monster”:

require y > 0

let z = |y −
√
y2 + 1| − 1/(y +

√
y2 + 1), w = z · z in

if w = 0 then 1 else (expw − 1)/w

Here Rival cannnot rule out a division by zero in the
else branch, so again cannot propagate movability flags.
Despite a few failures, the overall 81.0% success rate
shows that movability flags detect the vast majority of futile
recomputations.

4. Comparison with Mathematica

We also compared Rival to the N function in Mathematica
12.1.1. Mathematica’s documentation suggests that, like Rival,
N is intended to handle invalid inputs soundly and cut off
recomputation in some cases of over- and under-flow.4 We
thus ran Mathematica on the exact same expressions and
inputs as in Section 3. To do so, we set its precision limit,
$MaxExtraPrecision [2], identically to Rival and ask it
to evaluate the expressions We ask N to evaluate to 15.6
decimal digits of precision, the rough equivalent to double-
precision accuracy. If Mathematica throws an error related
to its precision limit, we consider that a failure to detect
futile recomputation, while we generously assume that any
warning indicates that Mathematica detected a possible futile
recomputation. We also performed a variety of cross-checks

4. Of course, being a proprietary system, it’s impossible to know with
certainty how Mathematica’s N works, and the documentation does not
always clarify.

https://docs.racket-lang.org/rival/
https://docs.racket-lang.org/rival/

Figure 1. Unsamplable points and the precisions
they were detected at. Only 19.0% continue re-
computing up to the working precision cap. For
all other points, Rival’s movability flags produce
a stuck interval.

Figure 2. Rival versus Mathematica’s N on 19895 hard inputs for the Herbie 1.4 benchmark suite.
Rival achieves better results for each outcome threshold, including successfully sampled points (dark
green), points proven invalid (light green), unsamplable points (orange), or points with unknown
results (red). Black points cause Mathematica to run out of memory, crash, or freeze.

to ensure that Mathematica and Rival perform the same
computation and that Mathematica’s errors and warnings
are treated as generously as possible. These cross-checks
passed, except in two cases, which we investigated, reported
to Wolfram support as bugs, and had those bugs confirmed.
We focus in this section on “hard” inputs where either Rival
or Mathematica detected a futile recomputation. Our results
are plotted in Figure 2.

Of the 19895 hard input points, Mathematica fails to
detect futile recomputations for 8151 while Rival fails on
1071 (7.6× better). Rival detects 5877 points not detected
by Mathematica, while Mathematica detected only 26 points
that Rival did not. In other words, Rival detects a near-
superset of points detected by Mathematica.5 Moreover,
Rival’s movability flags are sound, while Mathematica’s
raises warnings on 5830 inputs where Rival ultimately was
able to compute a value. Mathematica also reaches its internal
precision limit 1.4× more often than Rival.

In a few (64) cases, Mathematica takes over a second,
seemingly in an infinite loop, or declares that insufficient
memory is available.6 We render these inputs in black in
Figure 2. In 16 of these cases, the Mathematica process does
not respond to shutdown requests or even the SIGTERM
signal, and must be killed with SIGKILL. Finally, while not
a primary metric for comparison, Rival is 9.87× faster than
N. Even if Mathematica’s timeouts, OOM, and crashes are
subtracted from its runtime, Rival is still 9.03× faster. While
it is difficult to know the root causes of these problems,
Rival’s movability flags clearly enable more robustness.

5. Discussion

We began Rival three years ago to evaluate mathematical
expressions during sampling for the Herbie floating-point
error estimation and repair tool [3]. Prior to Herbie 1.4,
Herbie used unsound heuristics, which were slow and
unsound. The Herbie 1.4 release [4] switched to Rival, and
has since been used by thousands of users.

5. Without access to Mathematica’s internals it’s hard to say, but our best
guess is that Mathematica simplifies these expressions before evaluating
them, allowing it to succeed where Rival fails.

6. Our machine has 32GB of memory; Rival never runs out of memory
or takes longer than 250 ms to per input.

Rival is mostly structured as a traditional interval arith-
metic library, with a strong emphasis on correctness. Most
functions produce “tight” intervals in the sense of IEEE 1788;
all functions correctly propagate the def and ill annotations.
To ensure tight intervals, we split each function’s domain
into monotonic regions and computed critical points for each
monotonic region on paper. For some functions, like fmod,
this was challenging. We then implemented each function
using those critical points. To catch errors, we deployed
millions of random tests for soundness, weak completeness,
and movability, which caught several additional typos and
oversights, like sin internally rounded π to nearest instead
of rounding π differently for the two endpoints. As a result
of this focus on correctness, we have high confidence that
Rival intervals are tight for most functions and valid for all
of them. It is also faster than than unsound heuristics that it
replaced.

Movability flags were developed as we tried to make
Rival even faster. We found that the most of the time
was spent in futile recomputation, which frequently caused
timeouts. Lowering the maximum precision reduced timeouts
but also caused sampling failures. Movability flags grew out
of an attempt to instead detect and skip futile recomputations,
and sped up Rival by a factor of roughly 3× (Herbie overall
by about 10%).

References

[1] H.-J. Boehm, “Towards an API for the real numbers,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 562–576. [Online].
Available: https://doi.org/10.1145/3385412.3386037

[2] Wolfram, “$MaxExtraPrecision—Wolfram Language documentation,”
2020. [Online]. Available: https://reference.wolfram.com/language/ref/
%24MaxExtraPrecision.html

[3] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Auto-
matically improving accuracy for floating point expressions,” ser. PLDI,
2015.

[4] B. Saiki, O. Flatt, C. Nandi, P. Panchekha, and Z. Tatlock, “Combining
precision tuning and rewriting,” in 2021 IEEE 28th Symposium on
Computer Arithmetic (ARITH), 2021.

https://doi.org/10.1145/3385412.3386037
https://reference.wolfram.com/language/ref/%24MaxExtraPrecision.html
https://reference.wolfram.com/language/ref/%24MaxExtraPrecision.html

	Overview
	Movable and Immovable Endpoints
	Constants and Overflow
	One-Argument Functions
	Many-Argument Functions

	Stand-Alone Evaluation
	Comparison with Mathematica
	Discussion
	References

