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Abstract—Precision tuning and rewriting can improve both
the accuracy and speed of floating point expressions, yet these
techniques are typically applied separately. This paper explores
how finer-grained interleaving of precision tuning and rewriting
can help automatically generate a richer set of Pareto-optimal
accuracy versus speed trade-offs.

We introduce Pherbie (Pareto Herbie), a tool providing both
precision tuning and rewriting, and evaluate interleaving these
two strategies at different granularities. Our results demonstrate
that finer-grained interleavings improve both the Pareto curve
of candidate implementations and overall optimization time. On
a popular set of tests from the FPBench suite, Pherbie finds
both implementations that are significantly more accurate for
a given cost and significantly faster for a given accuracy bound
compared to baselines using precision tuning and rewriting alone
or in sequence.

Index Terms—precision tuning, term rewriting, optimization

I. INTRODUCTION

To illustrate precision tuning, rewriting, and the utility of
their combination, we begin with the following expression on
the interval (−∞, 1]: √

e2x − 1

ex − 1
(1)

When implemented with 64-bit floats, this expression is
inaccurate on [−1, 1] due to catastrophic cancellation. On
that subinterval, the real result of the subexpression (e2x −
1)/(ex − 1) approaches 2 as x approaches 0, while the
floating-point implementation steadily loses accuracy until
around |x| = 10−17 when it evaluates to NaN due to division
by zero. Thus, considering the distribution of floating-point
values on (−∞, 1], the expression does not even produce a
numerical result for a significant portion of its input domain.
Additionally, the expression contains calls to exp which is
slow compared to basic operators like + or ×.

A. Precision Tuning

Precision tuning can modestly improve either accuracy or
speed for expression (1). Increasing precision, e.g., to 80-bit
floats, improves accuracy by mitigating some cancellation, but
loses significant speed. Decreasing precision, e.g., to 32-bit
floats, improves speed by reducing the cost of the exp and
sqrt calls, but also loses some accuracy. Further tuning to
select per-operator precision yields little benefit for this small
example, though fine-grained tuning is needed to find optimal
accuracy vs. speed trade-offs in general [1], [2].

Pherbie

Fig. 1. Pherbie’s output for for the expression (1), comparing accuracy
and speed of alternate implementations. Left and low is better (faster and
more accurate). The triangle indicates (1) implemented in 32-bit floats. The
star for (7) highlights an implementation combining precision tuning and
rewriting. The orange curve indicates the Pareto front of implementations
Pherbie automatically discovers.

B. Rewriting

Rewriting can improve both accuracy and speed for expres-
sion (1). Rewriting to simplify the fraction yields

√
ex + 1 (2)

which improves accuracy by avoiding cancellation and im-
proves speed by eliminating one of the calls to exp. Rewriting
into a series expansion can further improve speed by avoiding
calls to exp altogether. Consider the first few Taylor polyno-
mials approximating expression (2) around x = 0:

√
2 (3)

√
2 + x (4)√

2 + x+ x2/2 (5)√
2 + x+ x2/2 + x3/6 (6)

As expected, these series expansions are faster but also
exhibit more error: while accurate near 0, they are undefined
for sufficiently negative x.

C. Combining Precision Tuning and Rewriting

While precision tuning and rewriting independently find
interesting implementations, both methods miss candidates
that require interleaving each technique with the other. This
becomes especially interesting when we also consider regime
inference [3], which rewrites a program to use different im-
plementation candidates in different parts of the input interval.
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For example, after combining precision tuning and rewriting,
a developer may select the following implementation:

if |x| ≤ 0.05 :
sqrt(2 + x)

else :
sqrt(expf(x) + 1.0f)

(7)

This candidate combines the 2nd order Taylor polynomial
approximation when x is near 0 with a precision-tuned variant
of (2) for the rest of the input domain. While this version
suffers some error near |x| = 1, it provides nearly the same
average accuracy as (2) while being roughly twice as fast. If
we take precision tuning even further and use half-precision
(16-bit) floats, this version can be sped up even more with
only modest accuracy loss.

D. Comparing Results: Tuning vs. Rewriting vs. Combining

Figure 1 compares implementations of expression (1). Aver-
age error is measured as in Herbie [3]: by sampling uniformly
over the representation of floats in the input interval and taking
log2 of the ULP distance from the real result correctly rounded
to the nearest 64-bit float.1 Time is measured in seconds per
100 million runs, over inputs sampled in the same way.

Which implementation of (1) is best? Within a geometry
kernel, accuracy concerns may dominate, leading a prudent
developer to choose (2) as it is within ½ ULP error for most
of the input interval. Within a graphics or machine learning
kernel, latency or throughput concerns may dominate, leading
a developer to opt for (3), perhaps motivated by domain
knowledge that typical inputs are near 0. Other applications
may be dominated by different concerns, leading a developer
to choose something between these two extremes; the mixed-
method candidate (7) presents an excellent trade-off. And
of course, with more advanced implementation techniques,
even more trade-offs would be possible and domain-specific
knowledge would be even more important.

Regardless of application requirements, developers should
only need to consider Pareto-optimal trade-offs, e.g., (2), (3),
and (7) for our example. Unfortunately, the search space is vast
and developers must currently navigate it either manually or
via ad hoc combinations of existing tools which individually
only provide either precision tuning or rewriting. Either way,
the process today is tedious and error-prone.

E. Contributions and Outline

We introduce Pherbie (Pareto Herbie), a tool2 which adapts
and extends techniques from Herbie [3] to automatically
generate a set of candidate implementations, and derive a
Pareto-optimal accuracy versus speed trade-off, for a given
floating point expression. The orange curve in Figure 1 is
Pherbie’s output for the expression (1): Pherbie finds accurate
implementations (2), fast implementations (3), and interesting

1Past work has shown that this error measure provides a smoother metric
for optimization, and that improving it correlates closely with improving
guaranteed worst-case error bounds [4].

2Pherbie is publicly available at https://herbie.uwplse.org.
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Fig. 2. System Architecture: The blue shadows indicate Herbie components
that were modified to develop Pherbie.

candidates in between (7), subsuming all the manually-crafted
examples discussed above. Pherbie can interleave precision
tuning and rewriting at different granularities; our evaluation
demonstrates that finer-grained interleavings produce richer
Pareto curves.

The rest of the paper is organized as follows: Section II pro-
vides background on Herbie. Section III describes how Pherbie
incorporates precision tuning into Herbie’s rewrite component.
Section IV discusses how Pherbie prunes candidates to keep
its search tractable, and how Pherbie performs cost-aware
regime inference to extract multiple candidates along a Pareto
front. Section V evaluates Pherbie on tests from the FPBench
suite [5], and Section VI concludes.

II. BACKGROUND

Herbie [3] is a tool for automatically rewriting expressions
to improve their floating-point accuracy.

Figure 2 illustrates Herbie’s architecture. Given an expres-
sion e, Herbie first samples a set of inputs I and computes two
versions of e’s output: approximate results OF = {JeKF(i) | i ∈
I} using IEEE-754 floating-point semantics and exact results
OR = {JeKR(i) | i ∈ I} using real semantics provided by
arbitrary-precision interval arithmetic. Herbie then builds a
set of candidate implementations using a “generate-and-test”
approach by repeatedly applying various rewriting strategies
and keeping the most promising candidates generated.

Herbie begins each iteration by determining which of a
candidate’s operations are most responsible for introducing
error, using OR and a measure of local error (Section III)
during the Localize phase. Herbie chooses the operations with
highest local error and performs various rewriting strategies
on them. The Rewrite phase tries hundreds of algebraic
manipulations (e.g., reassociations to avoid cancellation). The
Taylor phase takes series expansions in terms of different
input variables around different points to avoid over- and
underflow. The Simplify phase (elided in Figure 2) simplifies
expressions using standard identities. Such repeated rewriting
generates thousands of candidate implementations. To keep
search tractable, the Prune phase keeps only the candidates
that are most accurate in some part of the input domain.

After building the set of candidates, Herbie produces
an accuracy-optimized output expression during the Regime
phase, which selects a small subset of candidates that in-
dividually perform well on different parts of the domain
and also generates branch conditions for selecting between

https://herbie.uwplse.org
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Fig. 3. Local error analysis of expression (1) on input x = 10−16. Local
error (E) is expressed in log2 ULPs. The subtraction nodes (red outlines)
have maximum local error on this input; Pherbie will try precision-increasing
rewrites on those. Conversely, for nodes with minimal local error, Pherbie
will try precision-decreasing rewrites.

them (see expression (7) for an example). Herbie includes
several additional components not shown, e.g., for validating
optimized output expressions.

One important resource these phases all draw upon is
Herbie’s rewrite database, which consists of roughly 200
hand-written rewrite rules that Herbie can use to transform
expressions. Each rule ` → r consists of a pattern ` to find
and another pattern r to replace the matched code with. For
example, to avoid cancellation when b > 0 in b −

√
b2 − 1,

Herbie will generate the candidate 1/(b+
√
b2 − 1) by using

the rule x − y → (x2 − y2)/(x + y) and then simplifying
using other rules like (

√
x)2 → x. Note that this is just one

of thousands of candidates Herbie will consider. Herbie is
effective because it quickly tries many possible variants of
an expression and keeps only those which improve accuracy.

Unfortunately, Herbie does not support precision tuning and
optimizes solely for accuracy without any consideration for
speed. The following sections detail how Pherbie adapts and
extends Herbie (indicated with blue shadows in Figure 2):
Pherbie combines precision tuning and rewriting (Section III)
and then generates a set of implementations with Pareto-
optimal accuracy versus speed trade-offs (Section IV).

III. PRECISION TUNING IN PHERBIE

Pherbie implements precision tuning by introducing rewrites
that cast candidate subexpressions to different precisions. Us-
ing rewrites eases integration with Herbie’s existing “generate-
and-test” style passes, but requires careful design to keep the
set of candidates manageable.

A. Precision Rewrites

Herbie only considers implementations over a single, uni-
form precision. To support multiprecision implementations, all

operators in Pherbie are specialized to a particular precision,
e.g., instead of a single sqrt operator, Pherbie provides
sqrtfloat32 , sqrtfloat64 , sqrtposit16 , etc.

Pherbie already supports a broad range of precisions, in-
cluding all standard IEEE-754 formats, all fixedpoint formats,
several variants of posits, and Google’s bfloat16. Adding
support for a new precision p requires only implementations
of p’s operators and casts (conversions) between p and other
precisions. Precision-specific rewrites (e.g., to use posit’s
quires) can also be added manually.

To use Pherbie, a developer indicates a subset P of available
precisions that Pherbie should consider during optimization.
Pherbie adds precision rewrites of the form x → (x)p for
all p ∈ P to the set of rules available in the Rewrite phase
(Figure 2). These rewrites transform the subexpression x to
use precision p.

B. Guiding Tuning with Local Error

Pherbie must carefully choose where to apply precision
rewrites. A brute-force tuning strategy that applies all available
precision rewrites to all subexpressions of all candidates
generated during search quickly becomes intractable, even for
small expressions. Instead, Pherbie uses a local error analysis
to select candidate subexpressions where increasing precision
may improve accuracy or, conversely, where decreasing pre-
cision may improve speed with only modest accuracy loss.

Figure 3 computes local error on expression (1) for input
x = 10−16. Intuitively, local error determines the error
introduced by each operator individually, as if its inputs were
computed without error. Given an input i, local error analysis
begins at the leaves of a candidate implementation’s abstract
syntax tree (AST) and works bottom up. At each node n,
we compute the exact real result nR(i) of the subexpression
rooted at n as well as n’s local approximation nL(i): the result
of applying the precision-specific operator for n, but to the
exact real arguments from n’s child subexpressions, rounded
to the relevant precision. We then compute the ULPs distance
between nR(i) and nL(i) to get n’s local error nE(i).

Local error is a useful heuristic for determining the root
cause of rounding error, as it avoids blaming parent operators
for inaccuracies from their children. Pherbie follows past
work [3] in using local error to guide accuracy improvement:
when a node n with precision p has high local error, then
for each available precision q higher than p, Pherbie applies
rewrite x → (x)q to generate a candidate where the subex-
pression rooted at n is implemented at precision q. Pherbie
also uses local error in a new way: when local error is low
for node n with precision p, Pherbie similarly applies rewrite
x→ (x)q , but for all precisions q lower than p. In effect, this
causes Pherbie to increase precision where accuracy is low
and lower precision where accuracy is high. This novel use of
local error is essential for finding Pareto-optimal accuracy vs.
speed tradeoffs.

In practice, developers often use relatively few precisions P :
those supported by the target hardware. Since generating and
pruning candidates is relatively cheap in Pherbie and typically



1 def get_op_cost(op, repr):
2 bits = representation_size(repr)
3 op_cost =
4 match op with
5 | + | - | * | / | abs ⇒ 1
6 | conversion_op ⇒ 3
7 | exp | sin | cos | . . . ⇒ 100
8 return bits * op_cost

Fig. 4. Pherbie’s cost metric: The cost of an operator reflects the time it takes
to run. To account for the complexity of library function invocations, math
functions are given much higher costs than operators for basic arithmetic and
representation conversion. The final cost is the operator cost scaled by the bit
width of the representation.

only a few AST nodes are local error outliers, we can simply
try all precision casts for p ∈ P on the operators with the
highest and lowest local errors. Pherbie also helps ensure good
coverage of potential precision assignments by seeding the
initial set of candidates with versions of the input expression
implemented at each available precision.

IV. MULTI-OBJECTIVE OPTIMIZATION IN PHERBIE

Pherbie’s precision tuning via rewriting generates many new
candidate implementations. To keep the number of candidates
manageable during search, Pherbie requires an effective prun-
ing strategy to discard the least promising implementations.
Additionally, Pherbie ultimately generates a set of implementa-
tions providing a broad range of accuracy vs. speed trade-offs.
Finding the best combinations of candidate implementations
requires a new form of cost-aware regime inference.

A. Cost: Coarse-grained Estimation of Relative Speed

To determine which candidates to prune, Pherbie must
compare their relative speed and accuracy. Speed could be
measured by carefully timing a large, fixed number of execu-
tions of each candidate implementation over a variety of inputs
(as in Figure 1). Unfortunately, this approach is too slow given
the vast number of candidates Pherbie evaluates.

Instead, Pherbie exploits the insight that precise latency
measurements are not necessary for comparing candidates
during search: Pherbie requires only a rough estimate of candi-
dates’ relative speed. This leads to the more practical approach
of using a simple cost model. Figure 4 shows Pherbie’s default
cost model, used for any representation including floats and
posits. Each operator is assigned a base cost that roughly
reflects its speed relative to other operators. This base cost
is multiplied by the bit length of the operator’s precision to
additionally estimate time spent moving operands through the
memory hierarchy. A candidate’s overall cost is simply the
sum of its operator costs, except that for conditionals the cost
model returns the cost of the branch condition plus the cost
of the most expensive branch. Our evaluation shows that this
simple cost model is accurate enough to support relative speed
comparisons between candidates (Section V). But Pherbie’s
design is modular—users can easily adjust operation costs,
substitute a more realistic cost model, or even train precise
performance metrics [6].

To compare the accuracy of two candidates, Pherbie adopts
Herbie’s strategy as described in Section II — it computes both
OF and OR on a set of inputs and measures the difference: a
smaller difference implies higher accuracy.

B. Pruning: Keeping Pareto-optimal Candidates

In Herbie, the Prune phase simply retains the most accurate
candidate at each sampled point for use in future iterations,
discarding the rest. Pherbie, on the other hand, performs multi-
objective optimization to find implementations with a broad
range of accuracy vs. speed trade-offs. Herbie’s accuracy-
focused pruning strategy would prevent Pherbie from retaining
lower-cost, but moderately-less-accurate, candidates.

Pherbie’s Prune phase therefore retains not just the most
accurate candidates, but the most accurate candidates at every
cost. In Pherbie, a candidate is kept if it is the “best in class”;
if it is the most accurate implementation among all candidates
at or below its cost, on at least one sampled input. Note that
this not the normal cost-accuracy Pareto front: the Prune phase
considers each point independently. This retains a few orders
of magnitude more candidates, compared to Herbie’s accuracy-
focused pruning strategy, but is essential for the simultaneous
optimization of speed (cost) and accuracy. Section V shows
the effect of Pherbie’s pruning on its performance.

C. Cost-aware, Multi-objective Regime Inference

For expression (1), Herbie [3], which focuses solely on
accuracy, produces this rather unusual, high cost expression:

exp(log(
√
ex + 1)) (8)

It is ½ ULP more accurate on average than any of the
other candidates Herbie generated. Pherbie, on the other hand,
produces a set of implementations including the precision-
tuned expression (7) and the related version (9) below which
omits the precision tuning, as well as several other variants
with either lower cost or lower error.

if |x| ≤ 0.05 :
sqrt(2 + x)

else :
sqrt(exp(x) + 1.0)

(9)

Generating an optimal implementation typically requires
combining multiple candidates using conditionals branching
over the input domain. In fact, Herbie’s Regime phase (Sec-
tion II) finds the optimal (single, most accurate) implemen-
tation for a given (maximum) number of branch conditions.
However, this is not sufficient for Pherbie, which must ad-
ditionally consider multiple ways of combining branches to
generate a Pareto frontier of programs where each is either
faster or more accurate than its peers.

Instead, Pherbie uses an iterative regime inference algorithm
(Figure 5) which calls Herbie’s regime algorithm on the subset
of candidates below a cost threshold (bound). It first invokes
Herbie’s regime inference over the entire set of candidates
(effectively setting bound to ∞), and adds the extracted
program (prog) to Pherbie’s set of Pareto-optimal programs



1 def pherbie.regimes(candidates):
2 progs = {}
3 while !candidates.empty():
4 (prog, used) = herbie.regimes(candidates)
5 progs.add(prog)
6 bound = max(used.map(get_cost))
7 pred = λ v : get_cost(v) < bound
8 candidates = candidates.filter(pred)
9 return progs

Fig. 5. Pherbie’s regime inference algorithm: it iteratively invokes Herbie’s
regime inference to extract a set of candidate implementations at varying costs.

(progs). It then inspects each of the candidates (used) to
compute the maximum cost (bound) and retains only those
candidates with a lower cost than bound (Lines 7–8). The
algorithm then iterates over this filtered set of candidates
and repeats the process. It terminates when bound is low
enough that there are no more qualifying candidates.

Herbie’s original regime inference produces a single final
program by selecting a subset of available candidates that
minimizes error across the input domain [3]. Pherbie uses this
guarantee to ensure that each program in its final set of results
(progs) is the most accurate for its cost bound, thus yielding
a Pareto frontier.

Regime inference is the slowest phase in Pherbie: Herbie’s
regimes algorithm [3] has a complexity of O(ck3), for c can-
didate programs and k = | I | (number of samples). Running
it iteratively in Pherbie raises the complexity to O(c2k3). c
is also larger in Pherbie since its prune phase retains more
programs (Section IV-B). However, in practice we have found
that Pherbie typically completes this phase in few minutes
(Section V).

V. EVALUATION

To evaluate Pherbie, we first detail three representative case
studies. We then perform a broader survey over two benchmark
suites consisting of 53 tests. Additionally, we compare Pher-
bie’s coarse cost metric to actual running time and describe
a final case study using a large set of available precisions.
Overall, we find that Pherbie can effectively generate sets of
candidate implementations with a broad range of accuracy vs.
speed tradeoffs within a few dozen minutes.

A. Case Studies

Figure 6 shows Pherbie’s results for three representative
input expressions. Each point shows an implementation’s av-
erage error on the vertical axis (measured in log2 ULPs as de-
scribed in Section I) and its estimated speed on the horizontal
axis (as per Pherbie’s cost metric described in Section IV-A).
The black squares show the error and speed of the initial input
programs. The error of programs in Figure 6 is measured over
a set of 8000 points, significantly higher than the default of 256
points Pherbie used to generate the programs. This difference
creates a slight variance in the average accuracy, explaining the
few points which are subsumed by others on the Pareto curve.
We have not found this to be a significant issue in practice.
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Fig. 6. Cost versus error for three different benchmarks. The x-axes are not
comparable. The first plot shows little increase in error when selecting cheaper
programs; the second shows a steep tradeoff for low-cost programs and the
third shows a more gradual curve. The black square in each plot shows the
original program’s error and cost.

All results were computed using search parameters matching
Herbie’s default settings, and 16, 32, 64-bit floats as well
as bfloat16 as the set of available precisions. To use the
resulting curve of candidates, a developer would select among
these implementations based on application requirements.

Across all three case studies, Pherbie finds more accurate
(below the black squares) and faster (to the left of the
black squares) implementations compared to the initial input
program. We detail each case study below, focusing on how
combining precision tuning and rewriting yields a rich set of
accuracy vs. speed trade-offs.

(A) Curve Intersection. This case study is from Pharr, Jakob,
and Humphrey’s Physically Based Rendering (PBRT) [7],
an open-source textbook describing methods for rendering
photorealistic scenes. We consider an expression taken from a
method that computes the intersection of a ray and a Bézier
curve—this expression computes the error margin for testing
the intersection using a uniformly-sampled float u on [0, 1],
an angle θ ∈ [0, 2π], and the components n0 and n1 of the
normal vector:

(sin((1− u) · θ) · sin(θ)−1) · n0 + (sin(u · θ) · sin(θ)−1) · n1
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Fig. 7. Pherbie versus baselines on the NMSE (left) and PBRT (right) suites. Down and to the left is better: the horizontal axis measures program cost and
vertical axis measures log2 ULP error. We aggregate across multiple programs by summing costs and accuracies and joining Pareto curves. The black square
corresponds to the input and the orange square to the the RW baseline. For both suites, Pherbie provides the richest accuracy/speed tradeoffs.

This example shows Pherbie’s benefit even for input pro-
grams which are already accurate: Pherbie finds several alter-
nate implementations that are much faster yet still may provide
sufficient accuracy, such as n0+u·(n1−n0). It also generates a
few other low-order series expansions and also some precision-
tuned variants. Pherbie took 20.2 minutes for this case study.

(B) Nearby Tangent Difference. This case study considers an
expression rearrangement problem from Hamming’s Numer-
ical Methods for Scientists and Engineers (NMSE) [8], a
standard textbook on numerical analysis in scientific comput-
ing. The input expression takes the difference between two
arguments to tan where x, ε ∈ R:

tan(x+ ε)− tan(x)

Pherbie finds both faster and more accurate implementations.
Compared to Herbie, Pherbie could not find an implementation
that is both faster and more accurate. However, it does find
a candidate that has cost 5× lower and is nearly as accurate.
Pherbie took 12 minutes for this case study.

(C) Beckman Distribution, Sample Normal. This case study is
also from PBRT.

−log(1 + u)

c2p/(αx · αx) + s2p/(αy · αy)

This expression is part of a method that returns a surface
normal based on the Beckmann and Spizzichino distribution to
model light reflecting off of rough surfaces. More specifically,
it computes the tangent of the azimuth of the normal vector
based on a uniformly-sampled float u on [0, 1] with parameters
αx, αy , c2p and s2p (all of which are between 0 and 1) [7].

In this case, Pherbie leverages both series expansions and
precision tuning to lower the cost while maintaining accuracy.
Candidates plotted in the lower right compute log in double-
precision while candidates plotted in the lower left either
use single-precision, half-precision, or series expansions that
approximate log. Pherbie took 62.3 minutes for this case study.

B. NMSE and PBRT Surveys

The case studies above were selected to highlight represen-
tative Pherbie use cases. To better understand how Pherbie may
behave in general, we evaluate across 28 tests from NMSE
and 25 tests from PBRT, both suites are part of FPBench [5].

The NMSE suite contains many tests from scientific contexts
where accuracy concerns dominate. In contrast, the PBRT suite
contains tests from error-tolerant graphics applications where
latency and throughput concerns are often paramount, and
where developers may rely on hardware-specific precisions
(e.g., 16-bit floats).

Methodology. We consider five baselines. Brute-force Preci-
sion Tuning (BFPT) tries every available precision assignment
for every subexpression of the input. Rewriting (RW) runs
Herbie and returns its result. Multi-Rewriting (MRW) runs
Herbie 100 times, treating each unique result as another candi-
date. BFPT+RW runs BFPT, and for each resulting candidate,
generates another by running Herbie on it. RW+BFPT runs
RW, and for each resulting candidate, generates another by
running BFPT on it. This set of candidates demonstrates what
is possible without fine-grained interleaving of rewriting and
precision tuning. Each baseline internally builds a Pareto curve
of candidates that are most accurate for their cost.

The MRW baseline may seem surprising, and reflects the
randomized nature of Herbie’s search. MRW runs Herbie
repeatedly, sometimes (randomly) getting different outputs,
and constructs a Pareto curve from the results. Because Herbie
does not consider speed when selecting final outputs, the
resulting curve is quite flat, and located in the bottom-right
corner of the plot. This baseline can be interpreted roughly
as demonstrating the variance in speed accidentally discoverd
by Herbie’s “accuracy only” optimization. In principle, since
Pherbie is built on Herbie, running Pherbie multiple times
could also improve its Pareto curve, but we do not evaluate
this.

Additionally, we consider a variant of Pherbie, Phased
Pherbie (PP), which performs a slightly coarser interleaving
of tuning and rewriting. PP initially runs Herbie as normal,
but before the Regimes phase (Figure 2), runs BFPT on every
candidate from rewriting and then uses cost-aware regime
inference (Section IV-C). The Pherbie variants (default Pherbie
and PP) use all the same rewrites, cost model, pruning strategy,
and cost-aware regime inference. They differ only in that
default Pherbie guides precision tuning with local error while
PP uses a brute-force search (BFPT) on all candidates before
regime inference.



All input expressions in our benchmarks take 64-bit floats
as inputs and produce 64-bit floats as results; precision tuning
is used only to improve speed internally, but Pherbie ensures
the interface to an expression remains unchanged. We used
16, 32, and 64-bit floats as well as bfloat16 as the set of
available precisions P . All experiments were run on Ubuntu
20.04 with an AMD EPYC 7702 CPU and 128 GB of RAM.
For the baselines involving Herbie, we used version 1.4 with
default search parameters on Racket 7.9.

Results. Figure 7 compares these baselines and variants across
the NMSE and PBRT suites. As expected, no points on the
Pherbie curve appear above and right of any black squares;
in other words, Pherbie never generates candidates which lose
both accuracy and speed.

Both RW and MRW, the Herbie-based strategies which
optimize solely for accuracy, produce accurate but slow candi-
dates. Note that MRW always generates the most accurate can-
didates due to repeated, randomized Herbie runs. In contrast,
BFPT can significantly improve speed, but cannot increase
accuracy as the tests already “start” with 64-bit float precision
and no higher precision was made available in P .

The two “sequenced strategies” RW+BFPT and BFPT+RW
perform better than either precision tuning or rewriting alone.
The RW+BFPT strategy performs similarly to the BFPT strat-
egy, finding faster candidates, but “anchored” to the most ac-
curate RW result rather the initial expression. The BFPT+RW
strategy yields even better results: BFPT first (exhaustively)
finds lower-cost candidates, and RW then finds ways to make
them more accurate. Nonetheless, neither curve is competitive
with the Pherbie variants.

The default and PP Pherbie variants produce very close
results (often overlapping in Figure 7) and subsume the other
strategies everywhere except at the highest accuracies, where a
developer would simply use Herbie. This validates one of our
paper’s key insights: finer-grained interleaving of precision
tuning and rewriting produces a richer set of Pareto-optimal
accuracy vs. speed trade-offs.

Optimization Time. Above we compared the quality of each
strategy’s results. Figure 8 shows the average time (in minutes)
per test taken by each strategy during our experiments. The
RW strategy, a single Herbie run, is fastest, but only optimizes
for accuracy. BFPT+RW is slowest, taking hundreds of times
longer than RW, as it generates roughly 300 candidates from
BFPT and then runs RW on each. BFPT and RW+BFPT take
only a few minutes per test on average, but only yield mediocre
results compared to methods with finer-grained interleaving.
The default and PP Pherbie variants produce the best (nearly-
identical) results, though default Pherbie is roughly 10% faster
on average. Anecdotally, our experience suggests that, as
program size increases, Pherbie’s finer-grained interleaving of
precision tuning and rewriting scales better than PP.

C. Cost Metric

As described in Section IV-A, Pherbie’s cost metric provides
a simple model of a candidate’s relative speed. We evaluated

Strategy NMSE PBRT
RW 0.31 0.66
MRW 31.10 65.90
BFPT 3.41 7.15
RW+BFPT 7.40 10.10
BFPT+RW* 39.70 133.00
PP 10.90 28.60
Pherbie 9.43 25.80

Fig. 8. Average time (in minutes) per test for each strategy in Figure 7.
The true average for BFPT+RW on PBRT is likely higher (*) since 2 of 25
benchmarks timed out after 5 hours.
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Fig. 9. Cost versus run time for candidate programs generated by Pherbie for
the NMSE suite. Each blue dot corresponds to a candidate. Since Pherbie only
relies on the rank ordering of the candidate programs by cost, we measure
correlation with Spearman’s ρ. Across all programs in the NMSE suite (left),
we observed a strong correlation (0.86). For a single benchmark (right), the
correlation is even stronger (0.99). The results show that Pherbie’s cost model
is an acceptable approximation of program run time.

this model’s correlation with the actual running time of a
program to demonstrate that Pherbie’s cost metric is accept-
able. For each benchmark, we ran Pherbie with 32- and 64-bit
precisions and recorded the total time it took to evaluate every
output program generated by Pherbie on 8000 sampled points.

Figure 9 shows the correlation between cost and execution
time. The left plot shows all expressions generated by Pherbie
across all benchmarks in the NMSE suite; the right plot uses
only expressions from the Nearby Tangent Difference example
(Section V-A). Both plots show a large positive correlation,
showing that our cost model, though simple, adequately relates
expression cost with real execution time and is sufficient for
use in Pherbie. But we emphasize that alternate cost metrics,
when available, can easily be integrated to Pherbie, which
could potentially improve its results even further. For example,
we experimented with replacing the default cost model with
one that applies common subexpression elimination before
computing program cost. This improved the correlations de-
scribed here, though Pherbie still produced similar results to
the default cost model. Alternative cost models could also add
support for new number systems.

D. Other Number Systems

While most of the evaluation exclusively uses various IEEE-
754 formats, Pherbie also supports other number systems in-
cluding all fixedpoint formats and several variants of posits [9].
This section presents the results of running Pherbie with these
alternative number systems on the following rearrangement
problem from NMSE:
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Fig. 10. Cost versus error for expression (10). The black square (O) represents
the cost and error of the original program. The blue triangles are generated
using 16, 32, and 64-bit floats as well as bfloat16; the orange squares
add the posit8, posit16, quire8, and quire16, formats, as well as 8
fixedpoint formats. Note that blue triangles often overlap with orange squares,
which indicates that Pherbie generated many identical candidates in both
cases.

1√
x
− 1√

x+ 1
(10)

Figure 10 shows Pherbie’s output for this input expression
using two different sets of representations: the first (blue
triangles) uses 16-, 32-, and 64-bit floats as well as bfloat16
(4 distinct formats) while the second (orange) additionally
includes posit8, posit16, quire8, quire16, and 8
fixedpoint formats (16 distinct formats). The figure shows that
Pherbie finds more candidates along the Pareto curve when
run with additional precisions. The blue and orange points are
largely overlapping, i.e., the majority of the candidates Pherbie
finds are the same in both configurations. We found this same
trend throughout the NMSE suite — none of the benchmarks
had drastically different results curves, though they did make
use of the available precisions.

We also observed that Pherbie is scalable with respect to
the number of available precisions — it took Pherbie only 13.2
minutes to generate the orange Pareto-front compared to 10.1
minutes for the blue Pareto-front in Figure 10. For the entire
NMSE suite, Pherbie ran in 5.7 hours with 16 number formats
(orange) compared to 4.4 hours with 4 of them (blue).

VI. CONCLUSIONS AND FUTURE WORK

This paper combines precision tuning and rewriting to
obtain a Pareto-optimal frontier of floating-point expressions
that trade off accuracy and speed. Our key insight is that a
finer-grained interleaving of these two fundamental techniques
leads to more diverse implementations that provide a richer
space of trade-offs. We implemented this technique in a tool,
Pherbie, and our evaluation shows that Pherbie finds a large
Pareto-optimal curve of implementations over a wide range of
benchmarks.

We hope that Pherbie inspires further research integrating
term rewriting and precision tuning for computer arithmetic.

We would also like extend Pherbie to consider running time
variability for different inputs, and more broadly a more
detailed and realistic cost model, which may require exten-
sions to regime inference. Users of Pherbie may also require
additional tools: given the rich set of candidates Pherbie finds,
Pherbie users require a way to effectively navigate this space.
Most importantly, we hope to see Pherbie used to speed up
numerical programs and improve the workflow of scientists
and engineers.
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